Estimasi Gas Rumah Kaca pada Berbagai Macam Pengelolaan Air Menggunakan Model Denitrifikasi-Dekomposisi (DNDC)

Arif Rahmat, Chusnul Arif, Yudi Chadirin
*

Sari


Peningkatan kelangkaan sumber daya air menstimulasi pengembangan berbagai metode untuk menjaga air pada lahan padi. Beberapa penelitian telah dilakukan secara berkelanjutan dalam mengamati efektivitas berbagai rejim air dalam menjaga air, mengurangi fluks gas rumah kaca (GRK), dan mempertahankan hasil panen padi. Pengelolaan irigasi merupakan faktor penting dalam mengendalikan emisi metana (CH4) dan dinitrogen oksida (N2O) di lahan sawah. Penelitian ini bertujuan untuk mengevaluasi Model Denitrifikasi-Dekomposisi (DNDC) dalam mengestimasi emisi gas rumah kaca dari berbagai macam pengelolaan rejim air. Penelitian dilakukan dari Januari hingga Mei 2018. Metode SRI digunakan dalam percobaan plot dengan perlakuan tiga rejim air yang berbeda: rejim tergenang (RT), rejim basah (RB), dan rejim kering (RK). Model DNDC dibuat untuk memprediksi emisi CH4 dan N2O dalam ekosistem pertanian. Model ini telah digunakan dan dievaluasi di tanah subtropis, tetapi model ini masih perlu dievaluasi kemampuannya untuk tanah di iklim tropis seperti Indonesia. Emisi yang dihasilkan menunjukkan pola berbeda antara model simulasi dan model observasi. Nilai R2 dari simulasi emisi CH4 dan N2O dengan fluks aktual masing-masing adalah 0,123 dan -0,237. Temuan dari penelitian menunjukkan bahwa model simulasi memerlukan pengembangan untuk mampu memperkirakan emisi CH4 ­dan N2O pada kondisi lingkungan Indonesia.


Kata Kunci


DNDC; emisi; estimasi; gas rumah kaca; rejim air

Teks Lengkap:

PDF

Referensi


Ahn, J. H., Choi, M. Y., Kim, B. Y., Lee, J. S., Song, J., Kim, G. Y., & Weon, H. Y. (2014). Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil. Microbial ecology, 68(2), 271–283.

Arif, C., Setiawan, B. I., Munarso, D. T., Nugraha, M. D., Sinarmata, P. W., Ardiansyah, A., & Mizoguchi, M. (2017). Potensi pemanasan global dari padi sawah system of rice intensification (SRI) dengan berbagai ketinggian muka air tanah. Jurnal Irigasi, 11(2), 81–90.

Arif, C., Setiawan, B. I., Widodo, S., Hasanah, N. A. I., & Mizoguchi, M. (2015). Pengembangan model jaringan saraf tiruan untuk menduga emisi gas rumah kaca dari lahan sawah dengan berbagai rejim air. Jurnal Irigasi, 10(1), 1–10.

Babu, Y. J., Li, C., Frolking, S., Nayak, D. R., & Adhya, T. K. (2006). Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutrient Cycling in Agroecosystems, 74(2), 157–174.

Badan Pusat Statistik. (2015). Statistik Indonesia 2015. Jakarta: Badan Pusat Statistik.

Cai, Z., Shan, Y., & Xu, H. (2007). Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Science and Plant Nutrition, 53(4), 353–361.

Cha-un, N., Chidthaisong, A., & Towprayoon, S. (2017). Using the DNDC model to predict methane emissions from crop-rice rotation systems. Research Journal of Chemistry and Environment, 21(3).

Chen, H., Yu, C., Li, C., Xin, Q., Huang, X., Zhang, J., & Wang, W. (2016). Modeling the impacts of water and fertilizer management on the ecosystem service of rice rotated cropping systems in China. Agriculture, Ecosystems & Environment, 219, 49–57.

Chun, J. A., Shim, K. M., Min, S. H., & Wang, Q. (2016). Methane mitigation for flooded rice paddy systems in South Korea using a process-based model. Paddy and Water Environment, 14(1), 123–129.

Datta, A., Nayak, D. R., Sinhababu, D. P., & Adhya, T. K. (2009). Methane and nitrous oxide emissions from an integrated rainfed rice–fish farming system of Eastern India. Agriculture, Ecosystems & Environment, 129(1-3), 228–237.

FAO. (2016). Top 10 Country Production of Rice, Paddy. Diperoleh 20 Agustus 2018, dari http://www.fao.org/faostat/en/#rankings /countries_by_commodity

Fumoto, T., Kobayashi, K., Li, C., Yagi, K., & Hasegawa, T. (2008). Revising a process‐based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biology, 14(2), 382–402.

Gilhespy, S. L., Anthony, S., Cardenas, L., Chadwick, D., del Prado, A., Li, C., … Smith, P. (2014). First 20 years of DNDC (DeNitrification DeComposition): model evolution. Ecological Modelling, 292, 51–62.

Giltrap, D. L., Li, C., & Saggar, S. (2010). DNDC: A process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems & Environment, 136(3-4), 292–300.

Hasanah, N. A. I., Setiawan, B. I., Arif, C., & Widodo, S. (2015). Evaluasi koefisien tanaman padi pada berbagai perlakuan muka air. Jurnal Irigasi, 10(2), 57–68.

Hasanah, N. A. I., Setiawan, B. I., Arif, C., & Widodo, S. (2017). Muka air optimum pada System of Rice Intensification (SRI). Jurnal Irigasi, 12(1), 55–64.

Hoekstra, A. Y., & Chapagain, A. K. (2007). Water footprints of nations: water use by people as a function of their consumption pattern. Dalam Integrated Assessment of Water Resources and Global Change (hal. 35–48). Dordrecht: Springer.

Hoff, H. (2011). Understanding the nexus: Background Paper for the Bonn2011 Nexus Conference. Stockholm, Sweden: Stockholm Environment Institute. https://doi.org/diva2:465875

Hou, H., Peng, S., Xu, J., Yang, S., & Mao, Z. (2012). Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 89(7), 884–892.

Hou, H., Yang, S., Wang, F., Li, D., & Xu, J. (2016). Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice–winter wheat rotation systems in Southeast China. Ecological Engineering, 86, 239–246.

Intergovernmental Panel on Climate Change. (2013). Climate change 2013: The Physical Science Basis Working Group in Contribution to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

Katayanagi, N., Fumoto, T., Hayano, M., Takata, Y., Kuwagata, T., Shirato, Y., … Yagi, K. (2016). Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model. Science of the Total Environment, 547, 429–440.

Li, C. (2009). User’s Guide for the DNDC Model (version 9.3). Durham: Institute for the Study of Earth, Oceans, and Space, University of New Hampshire.

Li, C., Frolking, S., & Frolking, T. A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres, 97(D9), 9759–9776.

Li, C. S. (2000). Modeling trace gas emissions from agricultural ecosystems. Dalam Methane Emissions from Major Rice Ecosystems in Asia (hal. 259–276). Dordrecht: Springer.

Ma, J., Xu, H., Yagi, K., & Cai, Z. (2008). Methane emission from paddy soils as affected by wheat straw returning mode. Plant and Soil, 313(1–2), 167–174.

Meijide, A., Gruening, C., Goded, I., Seufert, G., & Cescatti, A. (2017). Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems & Environment, 238, 168–178.

Rajkishore, S. K., Doraisamy, P., Subramanian, K. S., & Maheswari, M. (2013). Methane emission patterns and their associated soil microflora with SRI and conventional systems of rice cultivation in Tamil Nadu, India. Taiwan Water Conservancy, 61(4), 126–134.

Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., … Gosling, S. N. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245–3250.

Setyanto, P. (2004). Mitigasi Gas Metan dari Lahan Sawah: Tanah Sawah dan Teknologi Pengelolaannya. Bogor: Pusat Penelitian dan Pengembangan Tanah dan Agroklimat.

Smakgahn, K., Fumoto, T., & Yagi, K. (2009). Validation of revised DNDC model for methane emissions from irrigated rice fields in Thailand and sensitivity analysis of key factors. Journal of Geophysical Research: Biogeosciences, 114(G2).

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., … Scholes, B. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1492), 789–813.

Uphoff, N. (2008). The System of Rice Intensification (SRI) as a system of agricultural innovation. Jurnal Ilmu Tanah dan Lingkungan, 10(1), 27–40.

Xu, Y., Ge, J., Tian, S., Li, S., Nguy-Robertson, A. L., Zhan, M., & Cao, C. (2015). Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Science of the Total Environment, 505, 1043–1052.

Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., … Crowley, D. (2010). Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139(4), 469–475.


Statistik Tampilan

Sari : 407 kali
PDF : 124 kali


DOI: http://dx.doi.org/10.31028/ji.v13.i1.11-20

Hak Cipta (c) 2018 Jurnal Irigasi



Jurnal Irigasi terindeks oleh:

 

Creative Commons License

Jurnal ini di bawah lisensi Creative Commons Attribution 4.0 International License. Hak Cipta Jurnal Irigasi, didukung oleh OJS.